Compact pairwise models for epidemics with multiple infectious stages on degree heterogeneous and clustered networks.

نویسندگان

  • N Sherborne
  • K B Blyuss
  • I Z Kiss
چکیده

This paper presents a compact pairwise model describing the spread of multi-stage epidemics on networks. The multi-stage model corresponds to a gamma-distributed infectious period which interpolates between the classical Markovian models with exponentially distributed infectious period and epidemics with a constant infectious period. We show how the compact approach leads to a system of equations whose size is independent of the range of node degrees, thus significantly reducing the complexity of the model. Network clustering is incorporated into the model to provide a more accurate representation of realistic contact networks, and the accuracy of proposed closures is analysed for different levels of clustering and number of infection stages. Our results support recent findings that standard closure techniques are likely to perform better when the infectious period is constant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super compact pairwise model for SIS epidemic on heterogeneous networks

In this paper we provide the derivation of a super compact pairwise model with only 4 equations in the context of describing susceptible-infected-susceptible (SIS) epidemic dynamics on heterogenous networks. The super compact model is based on a new closure relation that involves not only the average degree but also the second and third moments of the degree distribution. Its derivation uses an...

متن کامل

Generalization of Pairwise Models to non-Markovian Epidemics on Networks.

In this Letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations, which shows excellent agreement with results based on stochastic simulations. Furthermore, we analytically compute a new R_{0}-like threshold quantity and an analytic...

متن کامل

Spread of infectious diseases through clustered populations

Networks of person-person contacts form the substrate along which infectious diseases spread. Most network-based studies of the spread focus on the impact of variations in degree (the number of contacts an individual has). However, other effects such as clustering, variations in infectiousness or susceptibility, or variations in closeness of contacts may play a significant role. We develop anal...

متن کامل

Percolation and epidemics in random clustered networks.

The social networks that infectious diseases spread along are typically clustered. Because of the close relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight into infectious disease dynamics. A number of authors have studied percolation or epidemics in clustered networks, but the networks often contain preferential contacts in high degree n...

متن کامل

Pairwise-like models for non-Markovian epidemics on networks

In this letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations (DDE), which shows excellent agreement with results based on explicit stochastic simulations of non-Markovian epidemics on networks. Furthermore, we analytically compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 407  شماره 

صفحات  -

تاریخ انتشار 2016